
EyesWeb XMI 5.2.0 – SIEMPRE Library

May 20, 2011



Part I

Description

1



The EyesWeb SIEMPRE Library includes a collection of software modules and patches
which have been specifically designed and developed to support the requirements from the
EU ICT Siempre project. In particular, the SIEMPRE Library integrates the EyesWeb
platform with modules which are required for a distributed multimodal data recording and
playback.

• The SMPTE decoder block received an audio signal in inputs and decodes the SMPTE
timecode contained in the signal. See SMPTE time code and the references therin for
a description of the SMPTE encoding schema.

• The SMPTE encoder block generates an audio signal with an encoded time code.

• The Wave File Writer block writes timeseries in the binary format chosen for the
SIEMPRE recordings. The chosen binary format uses a small subset of the Broadcast

Wave Format specifications.

• The DeckLink input block add support for the DeckLink family of framegrabbers,
which are used in the Casa Paganini setup (see Acquisition setup at Casa Paganini)
for synchronized audio/video input from High Definition (HD) videocameras.

• The Qualisys SMPTE decoder block which decodes the SMPTE timecode as packed in
32 bits by the software Qualisys Track Manager software. This block, toghether with
the OSC support already available in EyesWeb, allows integration between EyesWeb
and the Qualisys system. This provides the possibility to analyze, in real-time, the
data tracked by the Qualisys Motion Tracking system. For the aim of the SIEM-
PRE project, the integration is particularly useful to be able to synchronize with the
Qualisys Software to visualize the recorded data.

In the following chapters, some examples are described, which show the overall infras-
tructure used for many of the recordings which happens in the EU ICT Siempre project

and the related EyesWeb patches.

2

http://www.infomus.org/siempre
http://en.wikipedia.org/wiki/SMPTE_time_code
http://en.wikipedia.org/wiki/Broadcast_Wave_Format
http://en.wikipedia.org/wiki/Broadcast_Wave_Format
http://www.blackmagic-design.com/products/decklink/
http://www.qualisys.com/
http://www.infomus.org/siempre


Chapter 1

Example 1: String Quartet recording

The aim is to record audio, video, motion capture, and sensors data of performances of a
String Quartet. The recording setup includes a Qualisys Motion Tracking system, one or
more HD videocameras, ambient microphones and instrument microphones. The recording
happens on three distinc PCs, and the synchronization of the data on the three computers
is guaranteed by timestamping each sample with a reference SMPTE clock which is received
by all computers (see Figure 1.1).

The three computers which are visible in the setup perform different operatorins:

• The black computer in the middle (A) records the Motion Tracking data. The same
computer also operates as the master clock generator, i.e., it generates the SMPTE
signal which is propoagated to the other computers.

• The lower-left computer (B) records audio/video data coming from the HD camera
(JVC GY-HD-251 in this case).

• The lower-right computer (C) records audio data from the instruments.

EyesWeb and the SIEMPRE Library are used for several purposes in this setup.
In computer (A) a patch to generate the SMPTE signal on multiple audio channels is

used. The patch si visible in Figure 1.2.
In computer (B) a patch to save audio/video data from the HD camera is used. The

patch si visible in Figure 1.3.
In computer (C) a patch to save audio data from the microphones on the instruments

is used. The patch si visible in Figure 1.4.

3



Figure 1.1: The acquisition setup installed at Casa Paganini, InfoMus Lab, Genova, Italy.

4



Figure 1.2: A patch to Generate the Smpte signal.

Figure 1.3: A patch to save the HD audio/video signal.

Figure 1.4: A patch to save the multichannel audio signal from the microphones on the
instruments.

5



Chapter 2

Qualisys integration

The SIEMPRE project is based on the use of the Qualisys Motion Tracking system to
analyze the movements of the performers. EyesWeb has been extended in order to integrate
with Qualisys and receive the tracking data in real-time. Figure 2.1 shows an example of an
EyesWeb patch receiving motion tracking data in real-time. The Z coordinate of a marker
placed on the top of a bow is received by the EyesWeb patch and plotted (see the graph in
the lower part of the patch). Moreover, the patch also receives the SMPTE timecode from
Qualisys; this timecode allows for synchronization of the processed data.

Another interesting integration example is given in Figure 2.2. In this example, the
Smpte audio signal is generated by EyesWeb basing on the value received, via OSC, from
the Qualisys RTM software. This mechanism may be used, for instance, to listen to the
recorded audio tracks in sync with the playback of the recorded motion-tracking data.

As a matter of facts, many audio editors1 allow for using the Smpte value as the reference
to which all the audio data is synchronized. When the audio data is recorded, it is times-
tamped with the current Smpte value; when the same Smpte value is received in input, the
corresponding audio data is played. Thus, by regenerating the Smpte signal, EyesWeb can
control the playback of the recorded data in synch with the playback of the motion tracking
data in the Qualisys RTM software. To use this patch, open a QTM file2 and process it
with the command Run real time processing on file..., which enables the Qualisys real time
protocol (i.e., data streaming via OSC). Then, run the patch; you should see the same
Smpte value in both the status bar of the Qualisys software and in the EyesWeb display
in the top of the patch (the one with a black background and red digits). The maximum
allowed difference between these values can be tuned by means of the slider. However, note
that imposing a small threshold may cause the generated smpte signal to be resynched to
the value streamed by Qualisys too many times. This can cause degradation of the quality
of the played audio signal as the generated Smpte signal contains discontinuities.

1The setup at Casa Paganini uses Adobe Audition as the audio editor
2Of course, the file must have been recorded with Smpte enabled

6



Figure 2.1: A patch to show the integration between EyesWeb and the Qualisys RTM
software.

7



Figure 2.2: A patch that regenerates an audio Smpte timecode based on the Smpte valued
received by Qualisys via OSC.

8



Part II

Reference

9



Chapter 3

SIEMPRE Catalog

3.1 Blocks

3.1.1 SmpteDecoder

bitmap

class name SmpteDecoder
catalog name SIEMPRE
catalog id SIEMPRE
class id smpte decoder

Decodes an SMPTE timecode from the audio signal.

Details Based on the LTC SMPTE library (http://ltcsmpte.sourceforge.net/), with
minor changes to build under Win32. The derived source code is available at https://svn.infomus.org/public/libltcsmpte/trunk

Notes With the support of the EU ICT Project 250026 - SIEMPRE (Social Interaction
and Entrainment using Music PeRformance Experimentation), 2010-2012

Inputs

Audio Stream
id input
type Base, PCMAudioBuffer
type id base, pcm audio buffer

required
required for initialization
required for execution

read only/read write read only
referred as inplace *no*
referred as inherited *no*

10



The input audio stream which should contain the SMPTE timecode track

Outputs

Timecode
id output
type Kernel, Time datatype (Kernel Catalog).
type id kernel, time
inplace id *no*
inherited id *no*

The decoded timecode

Parameters

TimeCode Track
id time code track
type Kernel, Int datatype (Kernel Catalog).
type id kernel, int
domain [ 0, +infinity )

The zero-based index of the timecode track. If it is greater than the number of available
channels, the last channel will be used.

Enable Output Offset
id enable output offset
type Kernel, Bool datatype (Kernel Catalog).
type id kernel, bool

In general the SMPTE timecode might be not aligned with the audio buffer. If this
parameter is set to true, an additional output is generated specifing the sample offset of the
SMPTE timecode with respect to the audio buffer. Note that the offset might be negative
in the (very common) case when the smpte was partially contained in the previous audo
buffer

Enable Output Locked
id enable output locked
type Kernel, Bool datatype (Kernel Catalog).
type id kernel, bool

Enable/disable an output providing info about whether the SMPTE signale has beed
locked

11



TimeCode Framerate
id frame rate
type Kernel, Int datatype (Kernel Catalog).
type id kernel, int

layout

Combo Box:
Custom
ATSC24/film (24fps)
NSTC (29.97fps)
PAL (25fps)
ATSC30 (30fps)

domain [ 0, 5 )
The framerate of the SMPTE timecode, i.e., how many timecode words are available in

a second. If Custom is selected a custom value can be specified in the Custom Framerate
parameter, otherwise one standard value can be selected

Custom Framerate
id custom frame rate
type Kernel, Double datatype (Kernel Catalog).
type id kernel, double

The custom framerate of the SMPTE timecode; this parameter is used only when Time-
Code Framerate is set to Custom

12



3.1.2 SmpteEncoder

bitmap

class name SmpteEncoder
catalog name SIEMPRE
catalog id SIEMPRE
class id smpte encoder

Encodes an SMPTE timecode to an audio signal.

Details Based on the LTC SMPTE library (http://ltcsmpte.sourceforge.net/), with
minor changes to build under Win32. The derived source code is available at https://svn.infomus.org/public/libltcsmpte/trunk

Notes With the support of the EU ICT Project 250026 - SIEMPRE (Social Interaction
and Entrainment using Music PeRformance Experimentation), 2010-2012

Inputs

Audio clock
id input
type Base, Audio clock
type id base, audio clock

required
required for initialization
required for execution

read only/read write read only
referred as inplace *no*
referred as inherited *no*

The input audio clock

Outputs

Output
id output
type Base, PCMAudioBuffer
type id base, pcm audio buffer
inplace id *no*
inherited id *no*

The encoded timecode

13



Parameters

TimeCode
id time code
type Kernel, Time datatype (Kernel Catalog).
type id kernel, time

The initial timeocde.

Reset
id reset
type Kernel, Trigger datatype (Kernel Catalog).
type id kernel, trigger

Reset the encoder to the initial timecode value

TimeCode Framerate
id frame rate
type Kernel, Int datatype (Kernel Catalog).
type id kernel, int

layout

Combo Box:
Custom
ATSC24/film (24fps)
NSTC (29.97fps)
PAL (25fps)
ATSC30 (30fps)

domain [ 0, 5 )
The framerate of the SMPTE timecode, i.e., how many timecode words are available in

a second. If Custom is selected a custom value can be specified in the Custom Framerate
parameter, otherwise one standard value can be selected

Custom Framerate
id custom frame rate
type Kernel, Double datatype (Kernel Catalog).
type id kernel, double

The custom framerate of the SMPTE timecode; this parameter is used only when Time-
Code Framerate is set to Custom

14



3.1.3 WaveFileWriter

bitmap

class name WaveFileWriter
catalog name SIEMPRE
catalog id SIEMPRE
class id wave file writer

Write the input time series as a wav file.

Notes With the support of the EU ICT Project 250026 - SIEMPRE (Social Interaction
and Entrainment using Music PeRformance Experimentation), 2010-2012

Inputs

TimeSeries
id input
type Kernel, Generic datatype
type id kernel, generic datatype

required
required for initialization
required for execution

read only/read write read write
referred as inplace *no*
referred as inherited *no*

Time series to be saved to file

Required interfaces
Kernel, StaticTimeSeries

Parameters

Filename
id param filename
type Kernel, String datatype (Kernel Catalog).
type id kernel, string

layout

Filename,
MustExist=true,
SaveMode=true,
OverwritePrompt=true,
Filter=”Wave files (*wav)—*.wav—All files (*.*)—*.*—All files (*.*)—*.*——”

Name of the wav file. Use an empty name to stop the recording

15



Format
id param format
type Kernel, Int datatype (Kernel Catalog).
type id kernel, int

layout

Combo Box:
32bit float (float)
64bit float (Double)
Normalized 32bit float (float)
Normalized 64bit float (Double)

domain [ 0, 4 )
Defines the format used to write the sample into the file : ’float’ each sample is writed

as 32bit floating value; ’double’ each sample is writed as 32bit floating value;

Title
id param title
type Kernel, String datatype (Kernel Catalog).
type id kernel, string

Title tag. It will be mapped to the ’INAM’ Exif tag

Datetime
id param datetime
type Kernel, String datatype (Kernel Catalog).
type id kernel, string

Datetime tag. It will be mapped to the ’ICRD’ Exif tag

Comment
id param comment
type Kernel, String datatype (Kernel Catalog).
type id kernel, string

Comment tag. Free text that will be mapped to the ’ICMT’ Exif tag

Timecode
id param timecode
type Kernel, String datatype (Kernel Catalog).
type id kernel, string

Timecode tag. It will be mapped to the ’ISMP’ Exif tag.

16



3.1.4 DeckLinkInput

bitmap

class name DeckLinkInput
catalog name DeckLink
catalog id decklink
class id decklink input
authors Paolo Coletta

Acquire synchronized audio/video from a DeckLink card.

Outputs

Output
id video output
type Base, Image
type id base, image
inplace id *no*
inherited id *no*

AudioOutput
id audio output
type Base, PCMAudioBuffer
type id base, pcm audio buffer
inplace id *no*
inherited id *no*

Parameters

Device Index
id device index
type Kernel, Int datatype (Kernel Catalog).
type id kernel, int
domain [ 0, +infinity )

The zero-base index of the Decklink card, in the case that more than one is installed in
the system

17



InputMode
id input mode
type Kernel, Int datatype (Kernel Catalog).
type id kernel, int

layout
Combo Box:
Audio/Video
Video only

domain [ 0, 2 )
Specifies whether to capture audio, or video, or both

Video Mode
id video mode
type Kernel, Int datatype (Kernel Catalog).
type id kernel, int

layout

Combo Box:
NTSC 720x486 30/1.001fps interlaced
NTSC 720x486 30/1.001fps interlaced (3:2 pulldown)
PAL 720x576 25fps interlaced
NTSC 720x486 30/1.001fps progressive
PAL 720x576 25fps progressive
HD 1920x1080 24/1.001fps interlaced
HD 1920x1080 24fps interlaced
HD 1920x1080 25fps progressive
HD 1920x1080 30/1.001fps progressive
HD 1920x1080 30fps progressive
HD 1920x1080 25fps interlaced
HD 1920x1080 30/1.001fps interlaced
HD 1920x1080 30/1.001fps interlaced
HD 1920x1080 50fps progressive
HD 1920x1080 60/1.001fps progressive
HD 1920x1080 60fps progressive
HD 1280x720 50fps progressive
HD 1280x720 60/1.001fps progressive
HD 1280x720 24/1.001fps progressive
2K 2048x1556 60fps interlaced
2K 2048x1556 60fps interlaced
2K 2048x1556 60fps interlaced

domain [ 0, 22 )
Select the resolution and framerate of the video stream

18



Pixel Format
id pixel format
type Kernel, Int datatype (Kernel Catalog).
type id kernel, int

layout
Combo Box:
UYVY 4:2:2 packed
BGRA 4:4:4 raw

domain [ 0, 2 )
Select the pixel format of the video stream

Num Audio Channels
id num channels
type Kernel, Int datatype (Kernel Catalog).
type id kernel, int
domain [ 1, +infinity )

Specifies the number of audio channels to capture

Audio Sample Format
id sample format
type Kernel, Int datatype (Kernel Catalog).
type id kernel, int

layout
Combo Box:
16bits signed
32bits signed

domain [ 0, 2 )
Specifies the format of each sample of audio

19



Part III

Appendices

20



Appendix A

SIEMPRE Binary Format

A.1 SIEMPRE – Binary file format

Monodimensional timeseries will be saved or converted to time-aligned Broadcast Wave
Format compatible files (i.e., extended WAVE files).

The SIEMPRE project will exploit subset of the Broadcast Wave Format standard. In
particular it will fix the number of channels to 1 (monodimensional data), the format to
WAVE FORMAT IEEE FLOAT (0x03), and the bits per sample to 32.

For a general description of Broadcast Wave Format and Wave files you may refer to
the Microsoft documentation or start from the following links:

• Audio File Format Specifications

• SonicSpot

A.1.1 Format description

The WAVE (sub-)format used for SIEMPRE has the following structure:

Field Length Content
ChunkID 4 “RIFF”

ChunkSize 4
Size, in bytes, of the RIFF chunk. Should be
equal to the length, in bytes, of the file minus 8.

WaveID 4 “WAVE”

Wave chunks . . .

Some chunks. Each chunk is identified by a
fourCC (four characters identifier) followed by
the size, in bytes, of the chunk (the size does
not include the FourCC and the size itself). Two
mandatory chunks are the “fmt” chunk and the
“data” chunk, which contains the characteristics
of the file (sample rate, num channels, sample
size, etc.) and the sample data respectively.

21

http://www-mmsp.ece.mcgill.ca/documents/audioformats/wave/WAVE.html
http://www.sonicspot.com/guide/wavefiles.html


The fmt chunk and the data chunks have the following structure:

Fmt Chunk
Field Length Content

ChunkID 4 “fmt ”

ChunkSize 4
For the SIEMPRE case the value is 16, a generic
reader should be prepared to face different sizes
too.

FormatTag 2
For the SIEMPRE case the value is
WAVE FORMAT IEEE FLOAT, i.e., 0x03.

NumChannels 2
For the SIEMPRE case the value is fixed to 1,
i.e., monodimensional channels

NumSamplesPerSeq 4
Sampling rate (e.g., somthing around 250.0 for
kinematical sensors)

AvgBytesPerSec 4
Data rate, in bytes, of the file. Can be computed
as NumSamplesPerSeq * BlockAlignment

BlockAlignment 2

Size of a block (a sample for each channel). Can
be computed as NumChannels * (BitsPerSample
/ 8). For the SIEMPRE case NumChannels is
fixed to 1, BitsPerSample is fixed to 32, thus
BlockAlignement is fixed to 4.

BitsPerSample 2
Number of bits for each sample. For the SIEM-
PRE case this is fixed to 32 (single precision
floating point numbers)

Data Chunk
Field Length Content

ChunkID 4 “data”

ChunkSize 4
For the SIEMPRE case the value is 4 (size of
sample) multiplied by the number of samples

Data . . . This is the actal data: sequence of float numbers
in the SIEMPRE case

Padding bytes 0 or 1
In the SIEMPRE case this is not needed as data
is aligned. In the general case this is only needed
if data is not aligned to a 16bits boundary

22



A.1.2 Application compatibility

The files produced by the Wave File Writer block have been tested to load in the following
applications:

• Players

– VLC media player

– Windows Media Player

– Quick Time player

• Music Software

– Audacity

– Sony Sound Force

– Sony Vegas Pro

• Computing environments

– Matlab: does not load additional info about the file. This is a general limitation
for the WAVE format support in Matlab.

23


	I Description
	Example 1: String Quartet recording
	Qualisys integration

	II Reference
	SIEMPRE Catalog
	Blocks
	SmpteDecoder
	SmpteEncoder
	WaveFileWriter
	DeckLinkInput



	III Appendices
	SIEMPRE Binary Format
	SIEMPRE – Binary file format
	Format description
	Application compatibility




